Maximizing Stability Degree of Control Systems under Interval Uncertainty Using a Coefficient Method
نویسندگان
چکیده
For linear automatic control systems, many synthesis methods have been developed that exercise options of the controller structure and parameters to provide the stated requirements to the system quality. Coefficient methods can compute approximate, but rather simple, correlations that link the automatic control system quality indices of a random order and the desired controller parameters. One of the most widely used criteria when designing an automatic control system is the system stability maximum degree. In real systems, the object parameters usually are rough or can be changed within certain limits. Such parameters are called interval parameters, and such control systems are called interval control systems. It seems very interesting to provide the maximum degree of robust stability in the system. The approach is based on coefficient assessment of the stability of interval systems’ indices and allows maximizing the robust stability degree when using unsophisticated algebraic associations.
منابع مشابه
Modelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملDelay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملFuzzy Lyapunov stability and exponential stability in control systems
Fuzzy control systems have had various applications in a wide range of science and engineering in recent years. Since an unstable control system is typically useless and potentially dangerous, stability is the most important requirement for any control system (including fuzzy control system). Conceptually, there are two types of stability for control systems: Lyapunov stability (a special case ...
متن کاملTerminal Sliding Mode Control for Nonlinear Systems with both Matched and Unmatched Uncertainties
In this paper, we extend the sliding mode idea to a class of unmatched uncertain variable structure systems. This method is achieved with introducing a new terminal sliding variable and the finite time stability of proposed method is proved using a new particular finite time condition in both reaching and sliding phases. In reaching phase new sliding mode controller is derived to guarantee the ...
متن کاملMethod for Multiple Attribute Decision-making under Risk with Interval Numbers
Multi-attribute decision problems with uncertainty largely exist in the real world, it is very necessary to solve these problems. The paper proposes a grey correlation method based on maximizing deviation to solve the multiple attribute decision-making problems under risk in which the weight is unknown and attribute values are interval numbers. In the grey correlation method, according to diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reliable Computing
دوره 19 شماره
صفحات -
تاریخ انتشار 2013